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Abstnct-Calculations on the basis of the self-consistent approximation are used to study the effects of
non-random distributions of dry and saturated circular cracks on the effective elastic stiffnesses of a
cracked body. Analytic and numerical results are given for two special distributions. In the first, the cracks
are assumed randomly distributed in planes parallel to a given plane. In the second instance, the crack
normals are randomly distributed in parallel planes. In all cases, the magnitude of the crack induced
variations depend upon a crack density parameter E which, for circular cracks of radius a is given by
E = N(a l ), where N is the number of cracks per unit volume, and upon an additional saturation parameter.

I. INTRODUCTION

This paper addresses the problem of determining the effective elastic properties of a body
permeated by certain non-random distributions of cracks. An isotropic homogeneous body is
imagined permeated by a distribution of flat cracks, either wetted by a compressible fluid or
dry, which renders the body homogeneous but anisotropic on a scale large compared to the
dimensions of the cracks. One wants to know how the elastic compliances and elastic wave
speeds depend upon the presence of the cracks. Two special cases are examined. In the first,
circular cracks are assumed parallel to each other, and in the second, the normals to circular
cracks are assumed randomly distributed in parallel planes.

Specific investigations of the effects on elastic properties of distributions of cracks in solids
date from the early and mid 1960s. Initial approaches assumed dilute concentrations of cracks.
Bristow[l] determined the effect of a small concentration of dry ribbon-shaped and penny­
shaped cracks randomly oriented on the elastic constants of a body. He assessed the defects in
elastic potential energy for single cracks by assuming that each crack was not influenced by its
neighbors. This allowed him to write down quantitative estimates for first order variations of
these material properties. Walsh [2] considered the effect of dilute concentrations of circular
cracks, dry or fluid filled, again isotropically distributed.

Dilute concentrations of non-randomly distributed cracks have only recently been consi­
dered. The results follow from case of a single crack in an isotropic body. Nur[3] investigated
the way in which specific applied stresses can be expected to favor the formation and growth of
cracks with preferred orientations and used these results to derive expressions for effective
elastic compliances of cracked rocks. Anderson et al. [4] have presented a numerical study of
the seismic velocities for a solid in which the planes of the circular cracks are all parallel.
Griggs et al.[5] (circular cracks) and R. J. O'Connell and B. Budiansky [unpublished manus­
cript, 1977] (elliptical cracks) display analytic expressions for the effective elastic constants as
well as for the case of cracks whose normals are constrained to lie in parallel planes.

The case of isotropic crack distributions for large crack concentrations was attacked by
Budiansky and O'Connell[6] and the ideas that they presented were important to the present
study. They introduced and clarified several important concepts. Firstly, they implemented the
self-consistent (SC) scheme to extend their analysis to the domain of large crack concen­
trations. This technique, developed independently by Budiansky[7] and HiIl[8] for composite
materials attempts to account for inclusion interactions by estimating the actual behavior of an
inclusion in the composite body as that of a single inclusion in the equivalent homogeneous
body.

Secondly, Budiansky and O'Connell emphasize that variations in effective constants vary
with a crack density parameter E, rather than with the crack porosity. PracticallY speaking, this
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means that the volume concentration of pore space may not be a useful measure of the effect of
cracks on moduli. For elliptic cracks, the crack density is defined as

(1.1)

There are N cracks per unit volume and A and P are the area and perimeter of the crack,
respectively.

Next, they found that the fluid bulk modulus KF enters into the expressions for effective
moduli only in combination with the matrix bulk modulus K and with the crack aspect ratio a
through a saturation parameter w = KFiaK. When w < 0.01, the cracks behave as if empty and
if w ~ 10 they appear saturated by an incompressible fluid.

Lastly, the results they derived for elliptic cracks seem to be quite insensitive to crack
planform. This may indicate that their formulas are accurate for cracks with arbitrary convex
shapes.

A general formulation of the self-consistent analysis of anisotropic composites recently
given by Willis [11] is complementary to the present work.

2. THE SELF·CONSISTENT APPROXIMATION

Two methods have been used for deriving the SC equations which govern the effective
elastic constants of composites: one, based on energy considerations [7] and the other [8],
involving a direct averaging of the components of stress and strain in the constituent phases of
the body. The two methods are entirely equivalent. This latter method, which seems to facilitate
the analysis for non-random crack distributions, has been adopted in the present study.

Imagine an initially homogeneous isotropic matrix, of volume V, characterized by Young's
modulus and Poisson's ratio, E and v. This body becomes permeated by non-randomly
distributed, fluid-saturated cracks, each of whose linear dimensions is small compared to V1/3.
The family of admissible crack distributions consists of those which render the body homo­
geneous but anisotropic in the large; i.e. on a scale large compared with the crack dimensions. It
is possible to derive very general expressions governing the effective moduli which apply to
bodies permeated by homogeneous distributions of fluid-filled inclusions of arbitrary shape.

Apply some stresses to this body. Let fib' iijj be the average strains and stresses experienced
by the body, which will be connected by the effective compliances Mijkl :

(2.1)

The components of the effective tensor Miikl display the usual symmetries in the subscripts,
Mjj/cJ = M ijlk = MiiJcl = M/cJib etc. Equivalently, we may write

(2.2)

The components of f l , iii are

and

respectively. Here, the 1'S are engineering shear ~trains.:.The c_ompo~ents AJii are ..defined in the
appropriate manner to connect the E'S and u's; M tI = Mtlll> M 12 = M 1I22, M I4 = M tl23, etc.

The average strain of the body fii can be written

(2.3)
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Suffix"m" (or no suffix) refers to quantities pertaining to the matrix phase; suffix"P" to those
of the fluid inclusion phase. Clearly,

and if

Ejk == -V-f Ejk dV,
m Vm

then

- (1 )-m+-FEjj == -11 Ejj l1Eij

where 11 == V,.{ V is the volume concentration of the inclusion phase.
Similarly,

- (1 ) -m -F
Ujj == -11 Ujj + l1Uij'

(2.4)

(2.5)

A further relationship connects the average stress components iTjj with the applied tractions
uijnj: iTij == uij[8].

The constitutive relations connecting the stresses and strains in the matrix, fluid phase and
composite body are

(2.6)

(2.7)

(2.8)

Since the matrix is isotropic,

(2.9)

To determine the single component MjJpq, apply a test stress

(2.10)

(Le. only iTpq == iTqp ':F 0) in (2.8) and focus attention on

(2.11)

Here, the fact that iTijnj is the applied traction is used.
Define the quantity E:pq == E: to be inclusion strain which arises due to the action of the

stress iTpq• Equations (2.4), (2.6) and (2.11) can be combined to yield

(2.12)

and (2.5) and (2.7) give

(2.13)

When eqns (2.12) and (2.13) are combined, the final result

(2.14)
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is obtained. Here, (e~pq) is the average inclusion strain en due to the far stress having only
iipq = iiqp as its non-zero components.

Equation (2.14) is the basic governing equation for the self-consistent calculation of
effective elastic constants of bodies permeated by a homogeneous inclusion phase (not
necessarily cracks). Since all quantities on the r.h.s. other than the right-most factor are (in
principal) known, the problem has been reduced to determining this average ratio of strain to
stress.

The self-consistent approximation is employed as it has been articulated by Budiansky[7]
and by Hill [8]. The assumption is made that each individual inclusion sees itself as being a
single crack embedded in an otherwise infinite and homogeneous body, but one which is
characterized by the as yet unknown constants of the composite body. Thus, the formidable
problem of the behavior of a non-randomly distributed ensemble of inclusions in an isotropic
body is transformed to the more tractable one of single inclusion behavior in an anisotropic
body.

In the remainder of this paper, the foregoing remarks will be applied to the special case of
inclusions in the form of cracks, and only elliptical or circular cracks.

There is an apparent difficulty in attempting to apply eqn (2.14) to the special case of cracks;
the inclusion strains become singular as the porosity 1J goes to zero. Simultaneously, the
inclusion strains become singular and the aspect ratio vanishes. (The crack can be regarded as
the limiting case of an ellipsoid characterized by semi-axes a, b, c, where a ~ b ~ c; define the
thickness aspect ratio as a = c/b.) Nevertheless, the product 1J(eF/u) remains finite. Indeed, it is
the limit

Iim(~)
a-.o U

which must remain finite, so that (2.14) becomes

For circular cracks,

lim 1Jla = 4/he
'1-.0
a-.o

where e = N(a 3
) is the crack density parameter introduced by Budiansky and O'Connell[6]; N

is the number of cracks per unit volume and a the crack radius. Thus, the governing equations
for the effective elastic constants permeated by flat circular cracks are

(2.14')

Equation (2.14') is the basic result of this section and will frequently be referred to below.
For dry cracks (KF = 0), eqn (2.14') becomes

M- - M m 4 I' (aefn,q)
ijpq - ijpq +3" 1re a~ U • (2.14')

(It seems more appropriate to use the superscript I = inclusion rather than F when dealing with
dry cracks.)

The main result of this section, eqn (2.14"), can be used in conjunction with knowledge of a
single flat crack in a (suitably defined) anisotropic body to specify the effective elastic moduli of
non-randomly cracked bodies. This analysis is presented in Refs. [9, 10]. Some results from this
investigation will be here summarized.
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Under the action of uniform far stresses, an arbitrary ellipsoidal cavity characterized by
semi-axes a, b, C, a ;;;. b > c, deforms into another ellipsoid. Thus, the crack face displacements
will also be ellipsoidal, i.e. there exist dimensionless quantities f3j such that the cavity
displacements Ui are

(2.15)

(The explicit recipes for the f3i are detailed in [9,10].) The strain associated with the crack in
the limit as the thickness aspect ratio a = clb vanishes are related to the cavity displacement
magnitudes by

(2.16)

where 'Y = bla, and superscript "I" refers to field quantities associated with the inclusion. Here,
E is some characteristic modulus of the solid, and u is some characteristic value of the applied
stress. Associated with the f3i are a set of influence coefficients Cj relating the crack
displacements to the applied stresses uij:

(2.17)

The quantities Cj are symmetric in their subscripts. Stress components other than Uik have no
influence on the f3i for flat cracks.

3. EFFECTIVE MODULI (DRY CRACKS)

The results of the last section, eqns (2.14"), can be used in conjunction with the behavior of
dry cracks in anisotropic media[9, 10] to specify the effective moduli of dry cracked bodies.
The general method to carry out this task numerically consists of the following steps.

(1) Assume values of Mjj• The Mjj are compliances which connect the 6-dimensional stress
and strain vectors: E =(Eh E2, E3, 'Y23, 'Y3h 'Y12), U =(Uh ... , ud; Ej = MjjUj.

(2) Use these to determine the matrices Cij associated with a single crack. In general, this
must be done with computer assistance. Since the average of the limits (aEfj) are needed, this
computation may have to be carried out many times corresponding to cracks of different
orientations with respect to the material frame of reference. The average strain limits lim aE~pq

a~

are now calculated, for a variety of test stresses, by means of these matrices (Cjj).

(3) These outputs are combined with the governing SC equations (2.14") to yield an explicit
set of relations

Using a standard iterative scheme (successive approximation, Newton-Raphson, etc.), the
computed average limits of Step 2 are used to refine the initial guesses for Mjj•

(4) Return to Step 1 and proceed until the Mjj converge to some prescribed tolerance.
Two special examples will be worked through. The first is that of planar transverse isotropy·

(PTI), in which the cracks are randomly distributed in planes parallel to a given plane. In the
second, that of cylindrical transverse isotropy (CTI), the cracks are distributed subject to the
constraint that their normals lie randomly in planes parallel to a given plane. In both cases, the
cracked solid appears macroscopically transversely isotropic, with the given plane being
parallel to the plane of isotropy.

The following derivations will require dealing with quantities referred to two coordinate
systems. The first system, to be termed the crack coordinate system, is one which is defined
with respect to a single crack. The crack is located in the ~-y plane of this system whose
coordinates are (Xh X2, X3) =(x, y, z). The material coordinate system, the second, with coor­
dinates (ih i 2, i 3) = (i, y, i), is one for which the plane of isotropy of the cracked body is the
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i-y plane. If a point P has coordinates (Xh X2, X3) in the crack system, then its coordinates
(ih i 2, i 3) in the material system are given by means of the tensor transformation matrix (Iii):

(3.1)

One important simplifying feature of the PTI and CTI analyses to be performed is that the
matrix (Cil ) (relating crack displacement to applied stress referred to the crack system) has the
same representation in both the crack and body coordinate systems. Consequently, only one
computation of the matrix (Cij) will need to be made when determining the Mil: the suitable
averaged values can be related to this single calculation.

The remainder of this section will be devoted to carrying out each analysis to the point
where computer assistance is called for. For PTJ, explicit analytic expressions for the effective
constants as functions of crack density can be obtained. For CTI, this point is reached after
deriving the expressions

PTI
The only two effective constants to be altered by the cracks are M33 = 1/Band M44 =Mss =

lIG. With respect to the body axes, the resulting constitutive matrix becomes

-v -v
-/I -/I

I
-v .- v

H
- I 2(1 + v)

0M=- -r- 0E

0
2(1 + v)

0r
0 0 2(1 + v) (3.2)

where H =BIE and r = GIG =2(1 + v)GIE.
One uses special cases of (2.14") to derive Hand r. For Hand r,

1 I +4 (I' ai{333)-:::;=- -1'£ Im--
E E 3 ",->0 (T

I I 4 (I' ai4323)-==-+-1'£ Im--
G G 3 ",->0 T

(3.3)

(3.4)

where test stresses (T33 =(T, T23 = 'T have respectively and separately been applied.
Since the cracks are assumed parallel to the i-y plane, it is possible, and highly desirable, to

choose a crack system Xi such that each axis o-Xi is parallel to the o-ii axis so that Iii =~ij. With
this choice of crack system, the limit inclusion strains of eqns (3.3) and (3.4) are given precisely
by the crack displacement magnitudes ~j:

I· (ai~3) - a1m - -,.,3
",->0 (T

lim (aiL) = ~I
",->0 (T

where the ~'s can be obtained from eqns (2.30) and (2.6) of Ref. [10]. Substituting these
expressions into (3.3) and (3.4) yields the desired equations for Hand r.
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~ = 1+ ~ ~ [2 (~ - Jl2) ] ~ [(1 + JI) (~- JI) + ~ [(1 - Jl2) (~ - Jl2) ]] E (3.5)

~ = 1+ ~ ~ [2 G~ :)]~ [(1 + JI) (~- JI) + ~ [(1 - Jl2) (~ - Jl2) ]]

X{l+Vr ~GG~ :)] ~[(l + JI) (~- JI) + ~[(l- Jl2) (~- Jl2) ]]}-I E. (3.6)

Solutions to these equations are graphed in Fig. 1 for JI = 1/4. These curves visually
demonstrate what analysis of eqns (3.5) and (3.6) bear out: There is no finite critical crack
density where either B or 0 vanish. As there is very limited scope for sufficiently severe crack
intersection among purely parallel cracks, this result is entirely expected.

eTl
Three independent elastic constants are affected by the presence of cracks. These are

M44 =Mss = 1/0, M66 = 1/G* and Mil =M22 = 1/B. The constitutive matrix becomes

1
-ji

H
-JI

1-JI
H

-JI

-JI -JI
- 1 2(1 + JI)M=- 0 0E r

0
2(1 + JI)

0-r-

0 0
2(1 + JI)

(3.7)r*

where, for convenience, the quantities r = O/G, r* =; G*/G, H = B/E, and

_ I+JI 1
JI=----r* H

Fig. I. PTI elastic constants; dry, circular cracks.

(3.8)
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have been defined. An additional derived quantity,

v*::::: Hii (3.9)

represents the ratio of fractional lateral contraction ill to the linear strain i 22 when a test stress
Ull is applied to the cracked body. The constants of (3.7) are referred to the material coordinate
system.

The eqn (2.14"), when specialized to CTI, will take the following form. When a test stress
a:~l u is applied, then

(3.10)

If a test shear f 23 =: T is applied,

(3.11)

As a third test stress, it is convenient to apply hydrostatic pressure ifij "" p8il in order to
determine an effective bulk modulus K. A modest generalization of (2.14") leads to

1 1. 4 ( . aif.)-::-=-+-1T€ bm~ .
K K 3 a->Q p

If K = GUn, then

i ==k [1 +~ -2ii-4vJ
The modulus G* is obtained by means of the auxiliary relation

0.12)

(3.13)

(3.14)

Contemplate a single crack within a body characterized by the constitutive matrix (3.7)

whose plane is inclined at an angle {) with the x-z plane of the body system. The matrix (Iii) has
the following matrix representation:

(

COS () 0 sin e)
I == . -sin 8 0 cos 8 ..

o t 0
(3.15)

and note that I-I := IT. For a series of test stresses u~ it is necessary to get the resulting crack
displacements as a function of 8. These are then averaged over all possible values of 8 and
substituted into (3.10)-(3.12) to specify equations Mij«um aiL».

a-oO

A state of stress U;.l' applied to the body far from the crack gives rise to limiting crack
strains. When referred to the body frame of reference, these are given by

E I' -1 - E I' {I I I] - I I E I' [ I]- .1m aE ii - - ·lm a ip jqE pq - jp jq - 1m aEpq •
Ua-oO Ua-oO Ua-oO

(3.16)

Now, the equations which relate crack strain singularities with displacements and displace­
ments with applied stress are

(3.17)
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where

and

a I C-1 .,
IJp = - pkU'3k·

U'

The end result of melding eqns (3.16)-(3.19) is

145

(3.18)

(3.19)

The term Ci/ is independent of the angle 8 and furthermore is a diagonal tensor:

(3.21)

where the parentheses about a subscript suspend the summation convention. Substituting (3.21)
into (3.20) yields the final relation

(3.22)

To determine H, apply a test stress U~I = U' and note, from (3.22), that

(3.23)

Since (cos4 8) = (sin4 8) = 3/8 and (cos2
(j sin2 8) = 1/8, (3.23) can be substituted into (3.10) to

yield

I 1TE
H = 1+"6 (d l + 3d3) (CTI, dry).

Next, to determine r, apply a test stress T23 = T. From (3.22)

I· [a;;~3] _cos
2

8 d1m -- --- 2
a....o T E

so that

1.= 1+ 'irE~ (CTI dr )r 3 (l + v) ,y .

Here, the fact (cos2 8) = 1/2 was used.
When hydrostatic pressure is applied far from the crack, the limit crack strain

dependent of 8 (owing to the isotropic nature of the pressure tensor u'ij = p8ij ) and also

I· [aih] _d3
1m -- --.

a....o p E

From (3.12), this implies

K 4 d3
~= 1+-1TE---
K 9 (1- 2v)

(3.24)

(3.25)

(3.26)

IS 10-

(3.27)

(3.28)
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so that, in conjunction with (3.14)

A. HOENIG

Also, from (3.8),

ii - v = ~E (d t - d3) (CTI, dry).

(3.29)

(3.30)

Thus, the dry cracked CTI body has effective constants specified by eqns (3.24), (3.26) and
(3.29) or (3.30). The terms dj , being independent of 8, are unambiguously defined as being the
diagonal elements of the matrix Cijl (see eqn 3.21) associated with the crack.

These effective stiffnesses have been obtained for v =0.25 and are shown in Fig. 2. Note
that above a crack density of E:=:: 0.65, v* is less than zero. Furthermore, despite the great
opportunities for crack intersection afforded by the cylindrical distributions, these graphs imply
that there is no finite critical crack density for which E, 0 or 0* vanish.

.8 1.0
€

Fig. 2. crr elastic constants; dry, circular cracks.

4. EFFECTIVE MODULI (SATURATED CRACKS)

In this section, the effect of cracks wetted by a fluid of bulk modulus KF on effective moduli
will be determined. The two examples of PTI and CTI configurations of circular cracks will be
discussed in detail.

The following analysis is subject to two assumptions. Firstly, the fluid in each crack is
isolated from that of its neighbors. The resulting moduli, then, will be appropriate to stress
changes that occur with sufficient rapidity to prevent communication of fluid pressure between
cracks, corresponding to the case of sufficiently high frequency elastic waves. A second
assumption is that KFiK ~ 1. (For air·filled dry cracks, KFiK - 10-6. For cool water-filled
cracks, KFiK - 0.03[6].)

In dealing with saturated cracks, the assumption of zero crack volume cannot be involved.
A small non-zero crack volume Vc must be assumed, and the saturation parameter

(4.1)

will then enter the analysis in an essential way. A and P are, respectively, the area and
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perimeter of the cracks. For circular cracks, this expression reduces to w = KFlaK, where a is
the thickness aspect ratio. The empty crack case is recovered for w = O.

The following procedure will be followed. As in all SC analysis, the elastic behavior of a
single fluid-filled crack in a suitably defined elastic matrix must be resolved. The strains and
displacements for this crack can be straightforwardly obtained from those of a single dry crack
in the same body.

The theorem that relates the behavior of dry and fluid-filled cracks follows trivially from the
work of Eshelby[12]. It has the following statement.

Let u'jk be uniform stresses in the inclusion frame applied far away from the inclusion.
(These stresses give rise to uniform inclusion stresses and strains Ufk' Efk') Then there exist two
tensors AjkJm, JLjklm depending only upon inclusion geometry and matrix moduli and not upon
inclusion moduli such that

(4.2)

Here again, E is some one of the matrix moduli.
The proof of this theorem, which relies upon the overall linearity of the problem and upon

the uniformity of the inclusion strains, will not be given here.

PTJ
As in the previous section, the solid will be characterized by the constitutive matrix (eqn

3.2). Since both voids and fluids cannot resist shear, the procedure by which eqn (3.6) relating r
to H was derived is independent of the presence or absence of crack fluid. It will thus continue
to be valid for saturated cracks.

To determine a second relation between Hand r, it is most convenient to apply hydrostatic
pressure uij =uij =p8ij far from the body. (Crack and body frame coordinate axes are chosen
to coincide.) The bulk modulus is given by

~ = Ekk =1- (2 +1. - 6v)
K P E H

so that H is known whenever ElK is. The constant K will be determined from

(4.3)

(4.4)

Since the crack volume is finite, it is quite proper to work with crack strains when dealing with
fluid-filled cracks.

From (4.2), there will exist some constants A == Ajjkk' JL == JLjjkk such that

- F F
KAEkk + JLP = p.

Consider two special values of K F in order to evaluate A and JL.
When K F = K, then pF =p, EfIc =plK. Therefore,

A+JL=l.

Since the A, JL are independent of KF, the result (4.6) is valid for arbitrary KF.
Next, suppose the crack is dry, K F =O. Then pF =0 and

(4.5)

(4.6)

(4.7)

(The subscript "0" identifies quantities associated with the empty crack.) The strain (EL,)o =
plEfJ3/a +O(pIK) is known from the dry crack analysis of the preceding sections, where fJ3 is
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the appropriate crack face displacement obtained from (2.30) and (2.6) of Ref. [10]:

Equations (4.6) and (4.7) determine A and I-' uniquely.
For arbitrary K F

, use the fact that pF = K¢r;., together with (4.6) and (4.7) plus the
assumption KFIK ~ 1 to determine that

(4.9)

so that, together with (4.4),

~ = 1+ 41TE. !33
K 9(1- 211) [I + W!33 ]

3(1- 211)

where w =KFlaK. Let

In combination with (4.3) and (4.8),

_ [ w!33 ]-1
D - 1+ 3(1- 211) . (4.10)

(PTI Saturated) (4.11)

Equation (4.11) is very general and encompasses both dry and saturated cracks. The case D = I
corresponds to dry cracks, while D = 0 corresponds to crack saturation by a hard fluid.

Equations (4.11) and (3.6) fully describe the saturated PTI cracked body. The solution
of these relations for £1E and 01G are graphed in Fig. 3 for II = 0.25 and for various values of
w. The cracks may be considered dry if w < 0.1 and wetted by a hard fluid (w = 00) when
w> 100.

CTI
The cracked body has a constitutive matrix given by (3.7). The effective constants are

specified by eqns (3.lOH3.12), although it is no longer permissible to take limit of vanishing
aspect ratio a in these equations. The same single crack as in the dry crack analysis is
examined. The crack strain is given by eqn (3.20):

(where a test stress 0';. is applied) but the components Ci/ are, in general, no longer described
by the theory of Section 2, since the presence of fluid in the crack will alter the relationship of
applied stress to crack displacement.

The tensor Ci/ (or Cij) remains diagonal for saturated cracks. The components cll and Czi
relate the stress components 0'31. 0'32 (the far stress is here referred to the crack coordinate
system) to the shear crack displacements Ph P2. These shear displacements will be unaffected
by the presence of fluid, and so the forms for CII , Cn will be the same as in the dry crack
analysis. Only C33 will be different.

To discuss the saturated component C"3J = dt, imagine the application of hydrostatic
pressure at infinity: O'ij = P~j. The Eshelby theorem (4.2) is invoked in the same way as for PTI,
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E
E

.4

.3

.2

.1

o
€

€z=(Jz IE
rxz = T XZ IG

1.0

Fig. 3. PIJ elastic constants; dry and saturated circular cracks.

so that certain constants A, /.L are defined by eqn (4.5). Carrying out an identical procedure, by
which two special cases, that of KF =K and KF =0, are used to solve for these two
parameters, results in the following formal expression for p FIp:

(p)= 1+ 3(1-2v)
? wd3

(4.12)

where the notation d3 = (C31)o has been used and refers to the tensor component computed for
dry cracks. Equation (4.12) with (3.12) imply that

where

~=1+~1TE~
K 9 (I-2v)

[ d J- 1

D = 1+ 3(1 ~~v) .

(4.13)

(4.14)

Comparison of (4.13) with (3.28) suggests that the saturated displacement is simply obtained
from the dry calculation by means of the factor D:

(4.15)
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Thus, the equations for the effective moduli are obtained from the dry relations, (3.24), (3.26),
(3.29), (3.30) by replacing d3 in those equations by (Dd3):

!=l+~~r 3 (l + v)

1 _ 1+ 1TE (d. +Dd3) cn, saturated
r* - 3""' (l + v)

(4.16)

(4.17)

(4.18)

(4.19)

Again, the adoption of this D-notation allows consolidation of the description of dry and
saturated cn bodies into one set of equations, (4.16}-(4.19). Dry cracked bodies are recovered
for D = 1.

These solutions are graphed in Fig. 4, which show the moduli for v = 1/4 and for various
values of lU. The dry case is very well approximated by lU < 0.1, and the case lU = 00 may be
used with little error whenever lU > 10. Note, too, the non-uniform variation of v* with lU.

Demanding that the strain energy of the cracked body associated with a tensile stress U\1

remain positive definite leads to the inequality

v* < 1- vH.

As E increases, H -+ 0, so that, in the limit of large crack densities, the least upper bound of v*
is 1.
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Fig. 4(a). eTI elastic constants; dry and saturated circular cracks. E.
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Partial saturation
From eqn (2.14) as a starting point, it is easy to generalize to the case of partial saturation in

which only a fraction ~ of the cracks are satarated. One simply replaces the parameter D by
(I - ~ +~D) in eqn (3.6) and (4.11) for PTI and in (4.16)-(4.19) for CTI.

Seismic velocities
An important geophysical application of effective constant theory is toward the prediction

of effective seismic velocities of cracked bodies. In terms of a matrix L;j = Mi/, we define the
quantities

a = L l1 - L44

C=L11-LI2-2L44

d =L 13 + L44

h = L 33 - L44

H = pv2
- L 44

(4.21)

following, e.g. Anderson, Minster and Cole[4]. Here, p is the density of the body and v is an
elastic wave velocity. The velocity equation in any plane containing the unique axis of a
transversely isotropic body is

(4.22)

The direction cosines m and n denote the direction of propagation: m = Y[I - n2
]. Propagation

in the direction of the unique axis is denoted by n = 1. The wave associated with the root
H = m2C/2 is purely transverse. The additional two roots are purely transverse or purely
longitudinal only in the directions n =0 or n = I. Parallel to the plane of isotropy, the three
velocities of propagation are (L Il /p)I/2, (L44/p)I/2 and [(L l1 - L I2)/2pr/2 and correspond to a
pressure wave and to two transverse waves, respectively. In the direction of the unique axis the
compressional velocity is (Ln /p)I/2 and the two shear wave velocities coincide: (L44/p)1/2.

This brief recapitulation has been cast in terms of the notation and language developed by
geophysicists. It is convenient to introduce a more descriptive notation. To this end, let

(4.23)

where the symbols II, .L refer to propagation parallel and perpendicular to the unique axis,
respectively. Similarly

(4.24)

and

(4.25)

The effective elastic wave velocities for PTI and CTI bodies are plotted in Figs. 5 and 6 for
various €I) and for v = 1/4. The dotted curves in the graphs of Vp are the predictions of Griggs et
al. [5], made on the assumption that there is a dilute concentration of dry circular cracks in the
body. For small values of crack density, this prediction is close to that of the self-consistent
approximation, but they soon diverge rather substantially at rather modest crack densities.
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